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We consider the electron transport in the capacitively coupled single-electron transistor with an ultrasmall
Tomonaga-Luttinger liquid island. The charging effects, as well as the Tomonaga-Luttinger liquid nature, are
treated by a self-consistent theory of the Coulomb blockade using the open boundary bosonization technique.
Analytical expressions for conductance are derived in the limits of low and high voltages and temperatures, for
bulk and edge island contact geometries, and for arbitrary environmental impedance. For an infinite system, we
obtain the power law of the conductance with the exponent changed from the usual Tomonaga-Luttinger
exponent due to the effects of the electromagnetic environment. For a finite system, we obtain expressions for
the conductance as a function of voltage near the Coulomb blockade boundary and as a function of temperature
for low temperatures; these expressions differ from the usual power-law behavior. The results show the
potential for improving the accuracy of single-electron devices such as those used in electrical metrology.
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I. INTRODUCTION

Developments in fundamental metrology over recent
years have made it feasible to consider introducing a new
International System �SI� of Units based on a set of exactly
defined values of fundamental constants.1 One requirement is
the ability to realize the base units in a straightforward fash-
ion. For example, by fixing the value of the elementary
charge e, the ampere could be realized from the simple rela-
tion I=ef by using a single-electron pump that transfers in-
dividual electrons at a driving frequency f traceable to the SI
second via an atomic clock. In order to be suitable for prac-
tical applications, such a pump should be able to generate
currents of the order of 1 nA with an accuracy of the order of
10−8. A variety of devices and materials have been investi-
gated to satisfy these requirements. These include
semiconducting,2 normal-metal,3 and superconducting4 de-
vices, as well as hybrid devices based on normal-metal-
superconductor junctions5 or surface acoustic wave-induced
pumping through a carbon nanotube.6

Another important application of single-electron devices
in regard to the new SI is the test based on quantum metro-
logical triangle7 of the assumed exactness of the expressions
for the Josephson constant KJ=h /2e and the von Klitzing
constant RK=h /e2. At present, the device used for this
purpose8 is the so-called R-pump.9 This device, as proposed
in Ref. 10, is based on the effect of the circuit-impedance-
induced power-law suppression of the cotunneling processes
that limit the accuracy of the single-electron-tunneling
devices.11 The conductance of a capacitively coupled single-
electron-tunneling transistor �C-SET� in the Coulomb block-
ade �CB� regime behaves as G�V2+2�, where �=R /RK, and
R is the zero-frequency impedance of the environment. In
this case, the width of the electrodes and the island are much
larger than the Fermi wavelength, making a large number of
transverse channels available for the tunneling electron.

Since the relevant energies are close to the Fermi level, Lan-
dau’s Fermi-liquid �FL� theory is applicable and the only
trace of electron-electron interaction is described by the
charging energy of the island. The above power law is ob-
tained from the tunnel Hamiltonian of the form HT
=�k,lTklck

†cle
i�, where the phase � is a linear combination of

Bose operators corresponding to the electromagnetic envi-
ronment modes. Using the fluctuation-dissipation theorem,
the phase-phase correlation function can be expressed in
terms of the environmental impedance from whence the
above power law of conductance is derived.

On the other hand, when the number of transverse chan-
nels in the island is reduced to one, the Fermi-liquid descrip-
tion of nearly free quasiparticles is no longer applicable �for
a review, see, for example, Ref. 12�. The electron-electron
interaction now has a drastic effect, resulting in a charge-spin
separation. However, the fermion field � can be represented
in terms of collective charge and spin bosonic fields � as
��ei�. By applying the Baker-Hausdorff formula and the
cumulant expansion for bosonic modes, the Green’s function
of the electron can be expressed as a function of the �−�
correlators. Similarly to the environmental effect outlined
above, this also leads to a power-law dependence of conduc-
tance versus voltage G�V�c at large biases �eV�kBT�. In
this case the exponent �c depends on the interaction param-
eters of electrons in a one-dimensional �1D� channel. This
result applies for an infinite length of the channel and has
been observed in carbon nanotube measurements.13 The
Green’s function in the case of a finite system of length Ld
can be obtained by conformal mapping of the complex plane
onto a cylinder of radius Ld /�, which results in a scale-
dependent exponent.14 This has also been studied numeri-
cally in Ref. 15. In the opposite limit of low voltages �eV
�kBT�, the conductance of the infinite system also shows
power-law behavior G�T�c. This has been confirmed
experimentally13 but, as the temperature was lowered below
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the charging energy of the island, a deviation from the power
law was observed. This paper considers conductance in this
temperature region, including the environmental effects that
are important in metrology as well as in the physics of the
Coulomb blockade.

The paper is organized as follows. Section II describes the
model and presents the Hamiltonian of the system. Section
III derives the expression for the tunneling current. For an
infinite system this gives the power law for the conductance
as a function of voltage and temperature, with the normal
exponent modified by the effect of the electromagnetic envi-
ronment. For the finite system, we obtain the analytic results
for low voltages and temperatures. Section IV summarizes
the results and concludes with a proposal for possible appli-
cations.

II. MODEL AND HAMILTONIAN OF THE SYSTEM

We consider a voltage-biased Tomonaga-Luttinger liquid
�TLL� C-SET connected to an external environment of im-
pedance Zi�	� �Fig. 1�. The theoretical framework is similar
to a C-SET with FL electrodes as reported in Refs. 16 and
17.The Hamiltonian of the system is given by H=H0+HT,
where H0=HFL+HTLL+Hem, and HT is the tunneling
Hamiltonian. The terms in H0 describe the Fermi-liquid elec-
trodes �HFL�, the Tomonaga-Luttinger liquid island �HTLL�,
and the electromagnetic environment �Hem�.

A. Fermi-liquid electrodes

A description of electrons in all three electrodes can be
expressed using the FL model,

HFL = �
i=1

3

�
ks


�i��k�aks
�i�†aks

�i�, �1�

where 
�i��k�= ��k�2 / �2m�, and aks
�i�†�aks

�i�� are the creation �an-
nihilation� operators of the electron with wave vector k and

spin s. Indexes i=1,2 ,3 refer to the left, right, and gate
electrodes, respectively.

B. Tomonaga-Luttinger liquid island

The TLL island12,18–20 can be described using the To-
monaga model,18 which is expressed by the g-ology
Hamiltonian21 in which only the forward-scattering terms g2
and g4 are included. Using the open boundary bosonization
technique,22 we start with the fermion field operator,

��x� = �
s

�s�x� = �
s,r=�

�rs�x� = �
s,r=�

eirkFxrs�x� , �2�

and impose the boundary condition for the island of length
Ld, �s�0�=�s�Ld�=0, that is,

−s�0� = − +s�0� , �3�

−s�Ld� = − e2ikFLd+s�Ld� . �4�

We introduce the chiral boson phases as

rs�x� =
�rs

�2��
ei�rs�x�, �5�

�rs�x� = �rs + �rs�x� =
r

�2
�
�=�,�

s������x� +
1
�2

�
�=�,�

s������x� .

�6�

Here � is a cut-off parameter, �rs are the Majorana fermion
operators satisfying ��rs ,�r�s��=2�rr��ss�, and � stands for
charge ��� and spin ��� degrees of freedom. Taking into ac-
count the open boundary condition, the boson phases are
expressed as

���x� = Q� +
�

Ld
N�x + i�K��

n=1

�
1
�n

sin
n�x

Ld
��n

���† − �n
���	 ,

�7�

���x� = − Q̃� −
1

�K�
�
n=1

�
1
�n

cos
n�x

Ld
��n

���† + �n
���	 . �8�

The Luttinger parameter K� and other quantities appearing in
Eqs. �7� and �8� are defined as

K� =��vF + �g4� − g2�	/�
�vF + �g4� + g2�	/�

, �9�

gi� =
1

2
�gi
 + �− 1���,�gi�	 , �10�

N� =
1
�2

�
rs

s���Nrs =
1
�2

�
krs

s���:ar,k,s
† ar,k,s: , �11�

Q� =
1

2�2
�
rs

rs����rs, �12�

R(1)(1)
T R(2)(2)

Tq
TLLTLLFLFL

Z2Z1

V2V1 V3

FLFL

C2 Q2
C3 Q3

C1

1

Q1

I 2I

FIG. 1. Model of the system: equivalent electrical circuit for
TLL C-SET with environmental impedances Zi�	�. TLL island has
discrete energy levels with energy spacing 
� ��=� ,��. � and �
denote bosonic excitations of charge and spin degrees of freedom,
respectively. There are two kinds of possible contacts between TLL
and external electrodes depending on the fabrication process: bulk
contact �nanotubes deposited over predefined electrodes� and edge
contact �evaporating the electrodes over the nanotubes�.
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Q̃� = −
1

2�2
�
rs

s����rs, �13�

ar,k,s
† �ar,k,s� being creation �annihilation� operators of elec-

trons in the TLL and :¯ : denotes the normal product.
Noticing that the following commutation relations hold be-
tween the operators specifying the bosonic excitations and

the zero mode ��n
��� ,�n�

����†	= i�nn�����, �N� , Q̃��	= i��,��, and
��rs ,Nr�s�	= i�r,r��s,s�, we are led to the bosonic commutation
relations between the field operators,

����x�,����x��	 = i������x − x�� , �14�

where we have defined ���x�=−�x���x� /�. With regard to
the zero mode in this bosonization scheme, the eigenvalues

of the operators Nrs and Q̃� are obtained from the open
boundary conditions. We finally have the TLL Hamiltonian
as

HTLL = �
�=�,�

�
�N�2 + �
n=1

�


̄��n���n
���†�n

��� +
1

2
� , �15�

where

v� = ��vF +
g4�

��
�2

− �g2�

��
�2�1/2

, �16�

are the excitation velocities for the degree of freedom �,


� = �
�

2Ld

v�
K�

=

̄

2K�

v�
vF

=

̄�

2K�
, �17�

and


̄��n� = 2K�
� · n = 
̄� · n , �18�

vF being the Fermi velocity. Note that the first and second
terms in Eq. �15� specify the zero mode and the bosonic
excitations of the TLL, respectively.

C. Charging energy and electromagnetic environment

In order to describe the electromagnetic energy, we need
to determine the phases �i canonically conjugate to the
charges Qi of the electrodes �this procedure, known as quan-
tum mechanics with constraints was first discussed by
Dirac23�. In the present case, the condition is that the island
charge

q = − �
i=1

3

Qi, �19�

is constant in time in the absence of tunneling,

�
i=1

3

Q̇i = 0. �20�

For simplicity, the environmental impedance is taken as
Zi�	�= i	Li. Given that the Lagrangian of the electromag-
netic system is

Lem = �
i=1

2 �Li

2
Q̇i

2 −
Qi

2

2Ci
+ Qi�Vi − Vc��

−
Q3

2

2C3
+ Q3�V3 − Vc� + ��

i=1

3

Q̇i, �21�

with a Langrange multiplier �, we can determine the canoni-
cally conjugate phases by

�i =
�Lem

�Q̇i

. �22�

Following standard procedure, the Hamiltonian of the elec-
tromagnetic system is

Hem = �
i=1

2
��i − �3�2

2Li
+ �

i=1

3 � Qi
2

2Ci
− QiVi,c� , �23�

where Vi,c is the voltage applied to the capacitance Ci,

eVi,c = e�Vi − Vc� = �i − �c, �24�

expressed in terms of the chemical potentials of the island
��c�, left electrode ��1�, right electrode ��2�, and the gate
electrode ��3�. Now we can quantize Hem requiring

�Qi,�i�	 = i��i,i�, �Qi,Qi�	 = ��i,�i�	 = 0. �25�

Note that matrix K1/2YLK1/2, whose eigenvector is K1/2�, di-
agonalizes Hem with respect to charges �Q→Q�� and phases
��→���,17 where

� = ��1

�2

�3
�, Q = �Q1

Q2

Q3
�, Vc = �V1,c

V2,c

V3,c
� , �26�

K = ��1 0 0

0 �2 0

0 0 �3
� , �27�

YL = � �1
−1 0 − �1

−1

0 �2
−1 − �2

−1

− �1
−1 − �2

−1 �1
−1 + �2

−1 � , �28�

� = ��ij�, �ij =
��i

�i − �i�	 j/	L�2��
l=1

3
�l

��l − �l�	 j/	L�2�2�−1/2

,

�29�

with �i=C /Ci�i=1,2 ,3�, � j =Lj /L��j=1,2�, and �3=0.
After straightforward calculations, we finally obtain

Hem = Henv + Hc, �30�

where

Henv = �
j=1

2 � �	 j/	L�2

2L�
� j�

2 +
Qj�

2

2C
− Qj�Vj,c� � , �31�
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Hc = �q/e − nc�2U . �32�

Henv and Hc describe the electromagnetic environment and
island charging effects, respectively. The quantities appear-
ing in Eqs. �31� and �32� are defined as

	L = 1/�L�C , �33�

L� = L1 + L2, �34�

nc = − �
j=1

3

CjVj/e + eVc/�2U� , �35�

U = e2/�2C�� = EcC/C�, �36�

C� = C1 + C2 + C3, �37�

C = C1C2/�C1 + C2� . �38�

Here U and nc are the charging energy of the island and the
noninteger charge offset �induced by the voltage bias condi-
tion and the charging energy�, respectively. Note that nc in-
cludes the chemical potential of the island and should be
determined self-consistently by the current continuity condi-
tion I1+ I2=0. The electromagnetic environment modes are
defined as

� 	 j

	L
2

=
1

2
��1 + �3

�1
+
�2 + �3

�2
��1

4
��1

�1
−
�2

�2
2

+ ��3

2
� 1

�1
+

1

�2
�2

+
�3

2
� 1

�1
−

1

�2
��1

�1
−
�2

�2
 , �39�

where j=1 and j=2 correspond to the plus and minus signs,
respectively. Note that the island charge q is the extra �quan-
tized� charge which describes the deviation from a neutral
island. The nonzero eigenvalue of q results only from asym-
metric tunneling events through the junctions. Therefore, we
can relate q to the zero mode, which describes the change in
the number of electrons in the system. Given that

q = − �
i=1

3

Qi = − ��C�/C�Q3�, �40�

and that N� is also the canonical variable conjugate to �rs,
which describes the number of electrons in TLL, we are led
to the identities

q = − e�2�N�,

��i�i3�3� = −
�

e
�rs. �41�

Here we introduced a different variable �N� which describes
the change in the charge in the TLL due to tunneling. In
order to take charging effect into account, we treat �N� as
independent variable of N�. Since electron tunneling changes
not only the charge but also the spin, it is consistent to in-

troduce �N�. The eigenstate of �N� satisfies �N���N̄��
=�N̄���N̄�� as the charge state of the island �m� satisfies
q�m�=me�m�. Since �Q3� ,�3�	= i�, we have ���i�i3�3� ,q	= i�,

and therefore e�i��i�i3�3��m�= �m�1�. At this stage, we are led
to the Hamiltonian of TLL zero mode fluctuations in the
presence of the charging effect,

HZ = �
�=�,�


��N�
2 + Hc = �

�=�,�

��N�

2 + U��2�N� + nc�2,

�42�

which specifies the charged state of the TLL island.

D. Tunneling Hamiltonian

According to the discussion above, the tunneling Hamil-
tonian can be written as

HT = �
i=1,2

�HT
�i� + HT

�i�†� , �43�

HT
�i� = �

rs
� dr�

0

Ld

dxTr
�i��r,x�

�ei �
j=1

2
��i�ije�j�/�e−i�rs�s

�i�†�r��rs�x� ,

=�
k

�
rs
�

0

Ld

dxTkr
�i��x�ei �

j=1

2
��i�ije�j�/�e−i�rsaks

�i�†�rs�x� , �44�

where Tr
�i��r ,x� is the matrix element of tunneling from po-

sition x �with chirality r�=��	 in the island to position r in
the ith FL electrode, and

Tkr
�i��x� =

1
�V�i�� dr e−ik·rTr

�i��r,x� , �45�

is the Fourier transform of Tr
�i��r ,x� with respect to the

Fermi-liquid state k. The field operator for the ith FL elec-
trode can be defined as

��i��r� = �
s

�s
�i��r� =

1
�V�i��

ks

aks
�i�eik·r, �46�

where V�i� is the volume of the electrode.
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III. TUNNELING CURRENTS

The tunneling current Ii through the ith junction �see Fig.
1� in the lowest order in the tunneling Hamiltonian �see Fig.
2� is given by

Ii = i
e

�
�

−�

+�

dt� 1

i�
�HT

�i�†�t�,HT
�i��0�	�exp�i

eVi,c

�
t ,

�47�

where we moved to the grand canonical ensemble, namely,

HT
�i��t� = eitK0/�HT

�i�e−itK0/�, �¯� =
Tr�exp�− �K0�¯�

Tr exp�− �K0�
,

K0 = H0 − �
i=1,2,3

�i� dri�
�i�†�r���i��r�

− �c�
0

Ld

dx��x�†��x� . �48�

By calculating the average in Eq. �47�, we arrive at the result
�see Appendix�

Ii =
GT0

�i�

4e
�

−�

�

d
 tanh��
2

��c,i − 
����
0

Ld

dx�
s

ÑTLL
�i� �
,x� ,

�49�

where GT0
�i� = �4�e2 /���T�i��2NFL�0�N1D�0�, with N1D�0�

=Ld / ���vF� being the density of states per spin in the
one-dimensional free-electron system. The normalized local

spectral density of TLL ÑTLL
�i� �
 ,x� is given by

ÑTLL
�i� �
,x� = 2�

−�

� dt

2��N1D�0�
ei
t/�

� �Fi
�env� �t�Fs

�c� �t�G+s�x,x,t�

+ Fi
�env�!�t�Fs

�c�!�t�G+s�x,x,− t�	 . �50�

The quantities appearing in the kernel in the above expres-
sion are the correlation functions of the phases correspond-
ing to the environmental charge Fi

�env��t�, the island charge
Fs

�c��t�, and the Green’s function of the electron in the TLL,
G+s�x ,x , t�. The environmental and island phase correlation
functions are given by

Fi
�env�"�t� = exp��

j=1

2

�ij
2�i ·

Ec

�	 j
· J"�	 j,t�� , �51�

J"�	,t� = coth
��	

2
�cos 	t − 1�� i sin 	t , �52�

and

Fs
�c�"�t� =

��N̄�,�N̄�=−�

�
e−�E��N̄�,�N̄��+it/��
���2�N̄��1/2�+s
���2�N̄��s/2�+U�2��2�N̄�+�nc��1		

��N̄�,�N̄�=−�

�
e−�E��N̄�,�N̄��

, �53�

where

E��N̄�,�N̄�� = �
�


��N̄�
2 + U��2�N̄� + nc�2, �54�

�nc = nc − �nc + 1/2	 , �55�

and �¯	 is the Gauss symbol. The exact chiral Green’s function22 is given by

G rs ((x, x'; t ) G rs ((x', x ; -t ))[ ]

s

(c)) (c)>

>

( t )F
s

<

<

( t )F

i

(env))

( t )F
i

(env))

( t )F

[ ]

[ ]

T r((r, x ))
( )i

[ ]*T r' ((r', x' )
( )i

G s (( r-r'; t ) G s ((r-r'; t )[ ]
( )i( )>i <

FIG. 2. Diagrammatic representation of the tunneling kernel
which corresponds to the statistically averaged quantity in Eq. �47�.
The bold solid line denotes the exact chiral Green’s function of an
electron in the TLL. The dotted line and the chain line denote the
correlation functions of phases conjugate to quantized �island�
charge and continuous �environmental� charge, respectively. The
thin solid line denotes the lowest-order Green’s functions of an
electron in the FL.
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G+s�x,y,t� = �̄+s
† �x,t�̄+s�y,0�� = � 1

�2��
e−i�+s�x,t� 1

�2��
ei�+s�y,0��

=
1

2��
e−i�/2L�x−y�H�x,y,t� �

�=�,�
��F��v�t − x + y�	−1/2�a�+1/2��F��v�t + x − y�	−1/2�a�−1/2�

�� �F��2x�F��2y��
F��v�t − x − y�F��v�t + x + y��b�/2� , �56�

with

a� =
1

4
� 1

K�
+ K�, b� =

1

4
� 1

K�
− K� . �57�

The zero mode contribution is

H�x,y,t� = �
�=�,�

�es��,��iu��2N���

=
#2�u��$��#2�u��$�� + #3�u��$��#3�u��$��
#2�0�$��#2�0�$�� + #3�0�$��#3�0�$��

,

�58�

where #n�u �$� are theta functions, and u�=− �
2Ld

� v�
K�

t+x−y�
and $�= i2�
� /�. Function F��z� appearing in Eq. �56� is
given by

F��z� = i
2Ld

��
sin
�z

2Ld
�
k=1

� �1 +� sin
�z

2Ld

sinh
k�v���

2Ld

�
2

�
= i

Ld

��
��� iv���

2Ld
�−3

#1� �z

2Ld
� iv���

2Ld
� , �59�

where ��$� is the Dedekind eta function. Note that ÑTLL
�i� �
 ,x�

is modified by the open boundary condition as well as the
charging effect. This is essential when discussing TLL be-
havior in the Coulomb blockade regime. The two cases cor-
responding to bulk �with translational invariance� and edge
contacts �without translational invariance� are obtained by
considering the limits of x /v�t�1 and x /v�t�1, respec-
tively, in the above expression for the chiral Green’s func-
tion.

Since Ii is a function of chemical potentials of ith FL
electrode �i and TLL electrode �c, the tunneling current of
the system I is obtained from

I =
1

2
�I1 − I2� �60�

under the current continuity condition

�
i=1

2

Ii = 0. �61�

We first consider the effect of the environment fluctua-
tions on an infinite system. When deriving the Hamiltonian

�30� we have, for simplicity, considered a purely inductive
environment but the approach is also applicable to arbitrary
linear circuit elements. In this case, the derivation can be
made along the lines presented above but with an infinite
number of oscillators whose spectral density is chosen to
reproduce Johnson–Nyquist correlations �see, for example,
review articles24 and references therein�. The usual experi-
mental setup includes a dissipative environment which is
Ohmic at low frequencies Zi�	�=Ri �	→0�. In this case Eq.
�51� is replaced by exp�Ji

"�t�	, where

R�Ji
"�t�	 � −

2

RK
� Cj

C�
2��1 +

C3

Cj
2

Ri + Rj�
�ln��	o

�i��

�
sinh

��t�
��

 , �62�

for large t, where i , j=1,2�i� j�, and where 	o
�i� is the

environment-dependent cut-off frequency given by

	o
�i� =

�Cj + C3�C�
CiCj

2��1 + C3/Cj�2Ri + Rj	
. �63�

From Eq. �59�, we have

F��v�t� → i
v���
��

sinh� �t

��
, �Ld → �� . �64�

For simplicity, let us consider the symmetric system, R1
=R2=R /2, C1=C2=2C, V1=−V2=V /2, and V3=0. By sub-
stituting Eq. �62� into Eq. �51� and Eq. �64� into Eq. �56�,
and by performing a Fourier transform in Eq. �50�, we get
the conductance from Eq. �49�, in the limit �→�, near the
CB region �V%e2 /C��,

G =
GT0��	o��cvF

4&��̃c + 1�v�
��v�

��
� eV − e2/C�

2�	o
�̃c

, �65�

�̃c = �c + c�, �c = �
�

�� − 1, �� = �a� �bulk�
a� + b� �edge� ,

�
�66�

where the environmental parameters are �=R /RK and c
= ��2C+C3�2+ �2C�2	 / �4C+C3�2. By increasing the voltage
further away from the CB region �V�e2 /C��, we obtain the
above formula with �̃c→�c, and the conductance ap-
proaches the power law with the usual TLL exponent.
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In the case of the finite system size, for �→�, we obtain
near the CB region �V%e2 /C��,

G =
GT02'c−1

&�c��N1D�0��	o
���

Ld
�c

�
n=0

�

�
m=0

�

F�n,m� , �67�

F�n,m� =
1

n ! m!

&�n + ���&�m + ���
&����&����

f�V�c�−1e−f�V���f�V�	 ,

�68�

f�V� =
1

2�	o
�eV − 2U − 
̄�

�

2��K� + 1

2K�
2 − 2
̄� n

K�
+

m

K�
� ,

�69�

'c = �0 �bulk�
b� + b� �edge� .

� �70�

The above formula shows that by increasing the electron-
electron interaction parameter, the Coulomb gap region ex-
tends due to the 1D nature of the island. For a large island
length, the indexes n and m can be considered as continuous
due to the small energy gap 
̄ that these indexes multiply. We
recover formula �65� by using Stirling’s approximation and
performing the integrations. For a short island length, we can
retain only the F�0,0� term in Eq. �67� due to the unit step
function in Eq. �68�. Away from the CB region, instead of F,
we have a set of delta functions which—after integration—
reproduce the corresponding long length limit of formula
�65�.

We consider now the conductance at zero voltage of a
finite system in the high-temperature regime �
���1�.
By using the asymptotic behavior of elliptic theta functions
for $→0,25 #1�u �e−$��2��$ exp�−�

2+�2u�2

4$ �sinh��u
$ �, and

# j�u �e−$����
$ exp�− u2

$ ��1− �−1� j2 exp�−�
2

$ �cosh� 2�u
$ �	 for j

=2,3, the chiral Green’s function can be written as

G+s�x,x,t� =
2'c−1

��
exp�−


̄t2

��2�
�

1 − 2��K�
2

4K�
3 � ��2

Ld
̄�
����

� K�
��K�

���i sinh� �t

��
�����

. �71�

By using Eq. �62� in Fi
�env�"�t�, approximating the summa-

tions in Fs
�c�"�t� by integrals and after substituting in Eqs.

�50� and �49� we obtain the conductance for �	o��1,

G = GT0
2'c

�
���2

Ld
�c

K�
��K�

��� �
̄
�	o

c�

�
̄��−�̃cI��̃c + 1� ,

�72�

I�a� = �
0

�

dw e−�Uw2
cos��

2
a + �Uw wa − �sinh w�a

�sinh w�a+1wa−1 .

�73�

For higher temperatures �U�1, where the Coulomb block-
ade is washed out, we obtain the above formula �72� with

replacements c�→0 and �̃c→�c, which is the usual TLL
power law.22

On the other hand, in the low-temperature regime where
�
���1�, even without any external impedance, the conduc-
tance is exponentially suppressed,

G = GT02'c���
Ld

�c


̄� exp�− �
̄��
�

2��K� + 1

4K�
2 + �U� .

�74�

The conductance decreases monotonously with increasing
electron-electron interaction similar to the effect of increas-
ing the environment impedance if the island was a FL.26

IV. SUMMARY

Analytic expressions for the tunnel current have been de-
rived for the electron transport in a C-SET with a TLL island.
For an infinite system and a general electromagnetic environ-
ment with dissipative Ohmic impedance at low frequencies,
the conductance shows power-law behavior as a function of
voltage at zero temperature. Near the CB threshold voltage,
this power ��̃c in Eq. �66�	 differs from the usual TLL power
��c� as a result of the electromagnetic environment. For high
voltages the environmental effects disappear and the usual
TLL power-law behavior results with the voltage offset due
to the CB of the island. For a finite system in the same limit
of zero temperature, we obtained the analytic expression for
the conductance versus voltage near the CB region. This
shows that for a short length case, the power depends only
on the environment.

Zero voltage conductance of a finite system as a function
of temperature is given by the expressions �72� and �73� �for

���1�, with power being modified by the environment for
low temperatures, compared to the environmental cut-off fre-
quency ��	o��1�, and the usual TLL power law is recov-
ered at higher temperatures ��U�1�. Conductance is
strongly suppressed at low temperatures �
���1�.

The analogous effect of the correlation functions of
bosonic modes of the environment and the charge and spin
excitations on conductance is significant for SET devices,
such as those used in metrology, particularly with regard to
the SI. The accuracy of SET devices is limited by cotunnel-
ing and its effect can be reduced by environmental imped-
ance or by increasing the electron-electron interaction in the
TLL. Therefore, a pump device consisting of TLL islands �or
combination of TLL and FL islands� could be used for in-
creased accuracy.

APPENDIX

The expression for tunneling current through ith junction
in the lowest order with respect to the tunnel Hamiltonian is
derived by evaluating Eq. �47�,

Ii = i
e

�
�

−�

+�

dt� 1

i�
�HT

�i�†�t�,HT
�i��0�	�exp�i

eVi,c

�
t .

�A1�

Note that the tunneling kernel becomes
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Xi�t� = ��HT
�i�†�t�,HT

�i��0�	� = Fi
�env� �t�Fs

�c� �T
�i� �t�

− Fi
�env�!�t�Fs

�c�!�T
�i�!�t� , �A2�

with various quantities defined as follows:

Fi
�env� �t� =�exp�− i

e

�
�
j=1

2

��i�ij� j��t��
�exp�i

e

�
�
j=1

2

��i�ij� j��0��� , �A3�

Fi
�env�!�t� =�exp�i

e

�
�
j=1

2

��i�ij� j��0��
�exp�− i

e

�
�
j=1

2

��i�ij� j��t��� , �A4�

Fs
�c� = �ei�rs�t�e−i�rs�0�� , �A5�

Fs
�c�! = �e−i�rs�0�ei�rs�t�� , �A6�

�T
�i� �t� = �

s
�
rr�
�

0

Ld �
0

Ld

dxdx��
k

Tkr
�i���x�Tkr�

�i� �x��e−ikF�rx−r�x��

� Gi
�FL� �k,t���rs

† �r�s�̄rs
† �x,t�̄r�s�x�,0�� , �A7�

�T
�i�!�t� = �

s
�
rr�
�

0

Ld �
0

Ld

dxdx��
k

Tkr
�i���x�Tkr�

�i� �x��e−ikF�rx−r�x��

� Gi
�FL�!�k,t���r�s��rs

† ̄r�s�x�,0�̄rs
† �x,t�� , �A8�

�Gi
�FL� �k,t�

Gi
�FL�!�k,t�

 = ��aks
�i��t�aks

�i�†�0��
�aks

�i�†�0�aks
�i��t��

 , �A9�

and

̄rs�x� = �rsrs�x� =
1

�2��
ei�rs�x�. �A10�

The correlation functions of phases Fi
�env��t� and Fs

�c��t� de-
scribe the electromagnetic environment effect and the charg-
ing effect in the TLL island, respectively. In the case of
Fi

�env��t�, it is standard procedure to take the trace of boson
correlation function of this type to give Eq. �51�. However, in
the case of Fs

�c��t� and bearing in mind that

e�i�rs��N̄�� = ��N̄� �
s��,�

�2
� , �A11�

for the eigenstate of q=−e�2�N� and noting that the trace
should be taken with respect to HZ, we obtain Eq. �53�.

In deriving �T
�i�"�t�, k dependence of Tkr

�i��x� can be ig-
nored as usual. Furthermore, we assume

Tkr
�i���x�Tkr�

�i� �x�� � �T�i��2��x − x�� , �A12�

since Tkr
�i���x�Tkr�

�i� �x�� is dominant when x��x�0 �for i=1�
or x��x�Ld �for i=2�. After carrying out a summation over
k, we arrive at

�T
�i�"�t� = − 2i�NFL

�i� �0��T�i��2
�/��

sinh��t/���

��
s
�

0

Ld

dx G+s�x,x, � t� , �A13�

where NFL
�i� �0� is the density of states of ith FL electrode at

the Fermi level. When deriving Eq. �A13� we took r�=r
only, since the factor e−ikF�r−r��x averages out the integrand
over several lattice sites. Using expressions derived above,
Eq. �A2� becomes

Xi�t� = − i�NFL
�i� �0��T�i��2

�/��
sinh��t/���

��
−�

�

d
e−i
t/���
0

Ld

dx�
s

Ñs
�i��
,x�� , �A14�

where we defined the effective local spectral density as

Ñs
�i��
,x� = 2�

−�

� dt

2��
ei
t/��Fi

�env� �t�Fs
�c� �t�G+s�x,x,t�

+ Fi
�env�!�t�Fs

�c�!�t�G+s�x,x,− t�	 . �A15�

By substituting Eq. �A14� into Eq. �A1�, we obtain the tun-
neling current through junction i

Ii = GT0
�i� 1

4e
�

−�

�

d
 tanh��
2

��c,i − 
����
0

Ld

dx�
s

ÑTLL
�i� �
,x� ,

�A16�

where GT0
�i� = �4�e2 /���T�i��2NFL

�i� �0�N1D�0�, N1D�0�
=Ld / ���vF�, and

ÑTLL
�i� �
,x� =

Ñs
�i��
,x�

N1D�0�
, �A17�

is the normalized effective local spectral density of the TLL
island.
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